

トップエスイー ソフトウェア開発実践演習

コネクティッドカーシステムの構築における DDS^[1]の適用評価

[1]Data Distribution Service

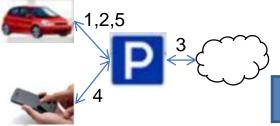
株式会社デンソー

福田 謙児

kenji u fukuda@denso.co.jp

開発における問題点

- コネクティッドカーシステムでは拡張性・ 可用性・応答性の要求が従来より高度化
- 解決策としてDDS(Data Distribution Service) が自動車業界で注目
- コネクティッドカーのシステム要件に対す るDDSの適合度が未検証



手法・ツールの適用による解決

- 特定のユースケースを用いてコネクティッ ドカーのシステム要件を具体化
- DDS型(データ中心、分散管理)と非DDS型 (処理中心、集中管理)のアーキを実装
- コネクティッドカーのシステム要件に対し 上記2つのアーキテクチャを比較評価

問題解決のアプローチ

<u>ユースケー</u>ス

実装

自動バレーパーキング

- 1. 自動駐車リクエスト
- 2. 予約済み区画への自動走行
- 3. 駐車料金の徴収
- 4. ピックアップリクエスト
- 5. 駐車場出口への自動走行

処理中心・集中管理型 データ中心・分散管理型 ユーザ情報取得 車両情報取得 比較 評価 Device Node.jsを用いて実装 DDSを用いて実装

評価

コネクティッドカーのシステム要件を観点として評価

評価観点	非DDS	DDS
拡張性	接続機器の <u>複製</u> に よる増加に強み	接続機器の <u>種類</u> の変化に 強み
可用性	物理構成に応じて 再送処理等を <u>設計</u>	物理構成に応じてQoSパラ メタを <u>適合</u>
応答性	同期処理発生時 応答時間の悪化に 注意	制御周期の設定に注意 [本演習での計測結果] 車-駐車場間の応答時間 ・22 - 67118ms (1ms周期) ・100 - 137ms (100ms周期)

考察

- コネクティッドカーシステムの実現に 向けてDDSは機能的には十分
- 一方で、所望の性能を実現するためには 設計パラメタの最適値の探索が必要
- ・ 今後は、実開発への適用に向けて、 以下の3点で性能評価と課題抽出を継続
 - 1. 現実的なシステム規模
 - 2. 機能の抜き差し
 - 3. 設計支援ツール