

アドバンス・トップエスイー プロフェッショナルスタディ

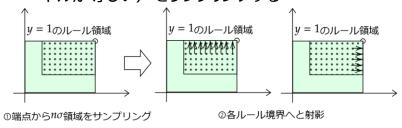
ルールベースと両立する機械学習システムの開発

富士通株式会社 工藤淳真 kudo.jumma@jp.fujitsu.com

開発における問題点

- ヒューリスティックなルールが存在し、人間が判断を 下しているシステム・運用に対して判断自動化、 精度向上のために機械学習を導入を行った。
- 一般に機械学習によって得られた決定境界はデータから確率的に得られており、ルールを守るとは限らず、既存運用を破壊しないか不明であり、機械学習モデルとルールの両立性を示したい。

手法・ツールの適用による解決


- [検証法の確立] 機械学習モデルとルールの判断の一致率をルール遵守率と定め、5分割交差検証とランダムサンプリングをすることでルールを遵守しているサンプル量を計測。
- [修正法の確立] 機械学習モデルについて、ルール違反サンプルを再学習、ルール違反罰則項付決定木によってモデルをルール遵守修正を実施。

取り組み内容

検証法

以下のサンプリング方法についてルール遵守率を求める。

- ① データ $X = (X_1, ..., X_n)$ に対して、各特長標準偏差ベクトル $\sigma = (\sigma_1, ..., \sigma_n)$ としてXの近傍をサンプリングする。
- ② ルール領域Rについて、境界面(近傍で法線ベクトルが等しい)をサンプリングする

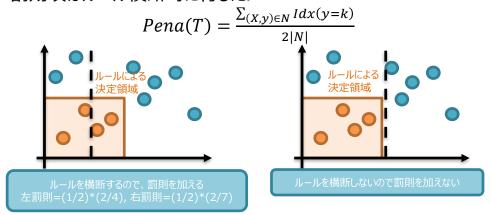
結果

正解率の推移

学習前	修正法①	修正法②
0.946	0.917	0.946±0.01

ルール遵守率の推移

手法	遵守率ルール1	遵守率ルール2
既存	0.9992	0.5833
修正法①	1.0	1.0
修正法②	1.0	0.5833


- ・修正法①では遵守率を高められたが、精度は落ちた。
- ・修正法②では精度を保持しつつ、遵守率を高められた。

修正法(1):ルール違反サンプルを再学習

修正法②:ルール罰則付決定木

決定木分枝則にルール罰則項を追加: Pena(T) + Imp(T) 罰則項はルール横断時に付した:

今後の展望

- 1. 本研究では**確率的にルール遵守率を計算したが、**アン サンブル学習などは決定領域が確定的に定まるので、**モ** デルからルール遵守率を確定的評価できないか?
- 2. ルール決定境界を矩形と制限したが、任意のルール決 定領域において本アルゴリズムは動作可能であるか?