トップエスイー ソフトウェア開発実践演習

時系列予測モデル構築における データプロファイリング・前処理支援手法の開発

株式会社日立製作所
工藤文也

背景·課題

- ・小売りでは、数万商品の需要予測が求められる
- ・ニューラルネットワークなど大規模モデルが用いられるが、傾向の異なる波形が混在すると予測精度が低下してしまう
- ・分析者の負担を増やさず予測精度向上したい

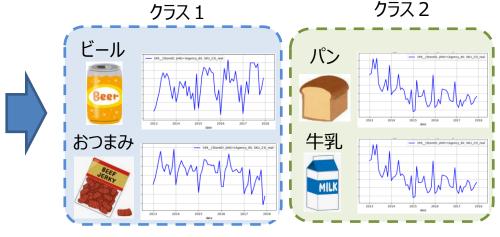
アプローチ

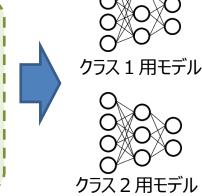
- ・予測したい商品の統計情報を用いて波形をクラスタリングし、類似する波形に分類
- ・分類されたクラスごとに予測モデルを構築することで、一つのモデルで予測する場合と比べて予 測精度が向上するか検証

データプロファイリング×クラスタリングによる波形の自動分類

商品(対象波形)ごとに データプロファイリング

類似商品の クラスタリング


クラスごとに予測 モデル学習



プロファイル	値	
データ数	1050	
平均購買実績	20.3	
分散	8.5	
最大	80	
最小	1	

実験結果

評価指標	(1)従来TFT	(2)提案TFTモデル(前処理+TFT)			
	モデル(1クラス)	2クラス	4クラス	6クラス	10クラス
RMSE	707	522	498	443	453
sMAPE	0.61	0.6	0.59	0.55	0.56
MASE	1.6	1.64	1.48	1.54	1.59

モデル: TFT (Temporal Fusion Transformer) [1] データ: Volume Forecasting (Stallion & Co.) [2] 評価指標: RMSE、sMAPE, MASE ※**小さいほど予測精度高**

[1] https://arxiv.org/abs/1912.09363

まとめ・今後の課題

■まとめ

- ・購買傾向の類似する波形同士がクラスタリング できている様子を確認
- ・クラスタリングにより一つのモデルで予測する従来と比べて、予測精度が向上することを確認

■今後の課題

・予測モデルを変えた場合やクラスタ数に応じた モデルパラメータのチューニング

[2] https://www.kaggle.com/datasets/utathya/future-volume-prediction