トップエスイー修了制作

TOP SOFTWARE ENGINEERS

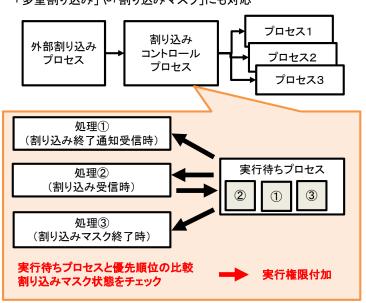
AOT ROS

Promelaにおける割り込み制御処理のフレームワーク作成および デッドロック原因推定について

中山 仁

開発における問題点

- 組込みシステムの割り込み処理をPromelaの 通常の記述方法で記述してモデル検査を行う ことができない。
- 検証結果の反例から原因特定に時間を要する 場合がある。


手法・ツールの適用による解決

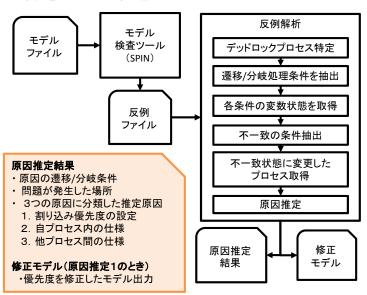
利用者の負担を減らすために下記を提案する。

- Promelaにおいて簡単に割り込み制御処理 を記述できるフレームワーク
- 反例からデッドロックの原因推定ツール

割り込み制御処理 フレームワーク

割り込みコントールプロセスで割り込みの各プロセス実行制御「多重割り込み」や「割り込みマスク」にも対応

テンプレートファイルの決められた部分に記述して利用


テンプレートファイル /* 割り込みコントロールプロセス*/ proctype Scheduler(){ <プロセス管理情報を定義> /* 各タスクのプロセス */ <各プロセスのモデルを記述>

【各プロセス管理情報】

項目	説明
優先度	プロセスの実行する優先度
実行フラグ	実行権限を与える変数 ("provided"句に使用)
状態	「待機中」、「実行中」など のプロセス状態
開始 ステータス	プロセスの開始ステータス
ステータス	プロセス内で定義するス テータス変数に使用

デッドロック原因推定ツール

反例の実行ログより**遷移/分岐処理条件**の不成立になっている 条件を明確にして原因推定

まとめ・課題

●まとめ

- 割り込み処理モデル作成の簡易化 フレームワークを利用することで、割り込み制御処理部分を 意識することなくモデル作成が可能
- 単一問題(2つのプロセス間)の原因推定 単一の問題によりデッドロックが発生しているモデルに対し ての問題箇所と原因の推定が可能

●課題

- 複数問題(複数のプロセス間)の原因推定
- 実務での利用した試験と試験結果検証