拡張可能なグラフィカルエディタへの 多階層モデリングフレームワークの適用に関する評価

株式会社富士通研究所

木村 功作

kimura.kosaku@jp.fujitsu.com

開発における問題点

背景: グラフィカルエディタの開発

- モデル駆動工学(MDE)の モデル変換、コード生成による開発自動化
- プラグインを用いたエディタの 使い勝手向上によるシェア獲得

問題点:グラフィカルエディタが扱うモデル (例:データフローモデル)をうまく定義できない

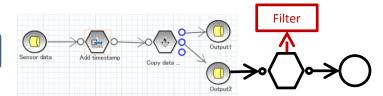
手法・ツールの適用による解決

多階層モデリングの適用

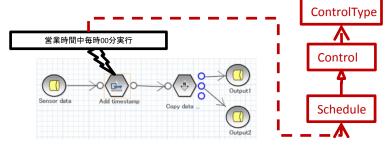
- 任意の階層数のモデルをシンプルに定義 以下のフレームワークの中でグラフィカルエディタ 開発にはどれが適しているか評価
- Eclipse Modeling Framework (EMF)
- Melanee
- MetaDepth

評価の観点と評価方法

どれがデータフローモデル(DFM)を最も忠実に定義できるか?


→ 各FWでの定義と元のモデルとの相違点をカウント

通常 階層	DFM 階層	> インスタンス化 ─⊳ 汎化 →> 参照
М3	M4	Meta Object Facility (MOF) Class (EClass) 片方向参照
M2	M3	DFM要素の定義
	M2	Process パレットに陳列される 部品の定義 Process AddTimestamp
M1	M1	キャンバスで編集 されるインスタンス Sensor data Add timestamp Copy data Copy data Output2
M0	MO	実際のプログラムコード タイムスタンプ データ複製 データ複製


どれがモデルを最も容易に拡張できるか?

→ 以下の拡張での既存要素の変更箇所をカウント

M2: 処理部品の追加

M3: (処理, データ以外の)要素定義の追加

結果

フレーム ワーク	DFMとの相違点	既存要 M2	素の変 M3	更箇所
EMF	5	0	0	
Melanee	0 🙂 😊	0	1	\odot
MetaDepth	3	0	4	

まとめ

- DFMを相違点無く定義でき、既存要素の変更箇所も少ないMelaneeが優位
 - ・ 片方向参照と参照のインスタンス化が 定義できることに起因
- 実際の適用にはまだ足りないものが多い
 - プラグインの仕組み
 - ・ エディタコード上でのモデル操作用API
 - 既存MDEツールの対応強化